Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Methyl-4-nitro-1-(3-pyridyl)-1H-imidazole

Maciej Kubicki^a* and Paweł Wagner^b

^aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, and ^bNanomaterials Research Centre and MacDiarmid Institute for Advanced Materials and Nanotechnology, Massey University, Private Bag 11 222, Palmerston North, New Zealand

Correspondence e-mail: mkubicki@amu.edu.pl

Received 14 May 2007; accepted 15 May 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.123; data-to-parameter ratio = 16.6.

The imidazole and pyridine rings in the title compound, C₉H₈N₄O₄, are twisted with respect to one another, with a dihedral angle of 48.30 (4)°. The nitro group is almost coplanar with the imidazole plane. The crystal packing involves some weak $C-H \cdots N$ and $C-H \cdots O$ hydrogen bonds, of which the strongest, between the imidazole CH group and a nitro O atom $[H \cdots O 2.396 (15) Å]$, forms a centrosymmetric dimer.

Related literature

This is a part of our studies of intermolecular interactions in 4nitroimidazole derivatives that started with 1-phenyl-4-nitroimidazole (Kubicki et al., 2001, 2002). Similar packing schemes and unit-cell parameters were found for 1-phenyl- and 1-(pmethylphenyl)-2-methyl-4-nitroimidazole (Kowalski, 1995). For related literature, see: Suwiński & Szczepankiewicz (1991).

Experimental

Crystal data

$C_9H_8N_4O_2$	V = 889.8 (3) A ³
$M_r = 204.19$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.1315 (12) Å	$\mu = 0.11 \text{ mm}^{-1}$
b = 7.3189 (10) Å	T = 291 (1) K
c = 15.104 (3) Å	$0.5 \times 0.4 \times 0.1 \text{ mm}$
$\beta = 98.178 \ (14)^{\circ}$	

Data collection

Kuma KM4 CCD four-circle diffractometer Absorption correction: none 5973 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	139 parameters
$wR(F^2) = 0.123$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
2311 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

2311 independent reflections

 $R_{\rm int}=0.018$

1892 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C12-H12\cdots O41^{i}$	0.93	2.57	3.2872 (16)	135
C14−H14· · ·N13 ⁱⁱ	0.93	2.75	3.5557 (17)	145
C15−H15···N3 ⁱⁱⁱ	0.93	2.58	3.4342 (16)	153
$C5-H5\cdots O42^{iv}$	0.93	2.37	3.2358 (16)	155

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) -x + 1, -y, -z + 1; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x + 2, -y, -z + 2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2016).

References

- Kowalski, A. (1995). Acta Cryst. C51, 1670-1672.
- Kubicki, M., Borowiak, T., Dutkiewicz, G., Souhassou, M., Jelsch, C. & Lecomte, C. (2002). J. Phys. Chem. B106, 3706-3714.
- Kubicki, M., Borowiak, T., Suwiński, J. & Wagner, P. (2001). Acta Cryst. C57, 106-108.
- Oxford Diffraction (2002). CrysAlis CCD (Version 1.69) and CrysAlis RED (Version 1.69). Oxford Diffraction, Wrocław, Poland.
- Sheldrick, G. M. (1997). SHELXS97 and SHELX97. University of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Suwiński, J. & Szczepankiewicz, W. (1991). Pol. J. Chem. 65, 515-518.

supplementary materials

Acta Cryst. (2007). E63, o3454 [doi:10.1107/81600536807023884]

2-Methyl-4-nitro-1-(3-pyridyl)-1*H*-imidazole

M. Kubicki and P. Wagner

Comment

Almost identical crystal packing was observed in the crystal structure of 1-(4-methylphenyl)-2-methyl-4-nitroimidazole (Kowalski, 1995), which crystallizes in similar unit cell (8.259 (2) Å, 7.805 (2) Å, 16.774 (3) Å). Also, there are close analogies between the intermolecular contacts in these structures. Another similar unit cell was used to describe 1-phenyl-2-methyl-4-nitroimidazole (Kowalski, 1995). In this case, however, only the projection along b-direction might be compared to the former cases; the packing along other directions looks quite different. In this case there is less intermolecular contacts in the crystal structure. This comparison might be regarded as another argument in favour of the role played by C—H···O and C—H···N hydrogen bonds in the determination of the crystal packing.

Experimental

The title compound was synthesized by aromatic nucleophilic sybstitution *ANRORC* according to procedure described before (Suwiński & Szczepankiewicz, 1991).

Refinement

Isotropic displacement parameters for hydrogen atoms were calculated as 1.2 (1.4 for the methyl group) times the U_{eq} value of the appropriate carrier atom.

Figures

Fig. 1. Anisotropic displacement ellipsoid representation (at the 50% probability level) of the molecule 1 (Siemens, 1989), together with numbering scheme. The hydrogen atoms are drawn as spheres with arbitrary radii.

Fig. 2. The crystal packing as seen along [010] direction. Weak hydrogen bonds are depicted as dashed lines.

2-Methyl-4-nitro-1-(3-pyridyl)-1H-imidazole

Crystal data C₉H₈N₄O₂

 $F_{000} = 424$

$M_r = 204.19$	$D_{\rm x} = 1.524 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3725
<i>a</i> = 8.1315 (12) Å	$\theta = 3-23^{\circ}$
b = 7.3189 (10) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 15.104 (3) Å	T = 291 (1) K
$\beta = 98.178 \ (14)^{\circ}$	Prism, colourless
$V = 889.8 (3) \text{ Å}^3$	$0.5 \times 0.4 \times 0.1 \text{ mm}$
Z = 4	

reflections

Data collection

KUMA KM4CCD four-circle diffractometer	1892 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.018$
Monochromator: graphite	$\theta_{\text{max}} = 29.6^{\circ}$
T = 291(1) K	$\theta_{\min} = 5.1^{\circ}$
ω scan	$h = -9 \rightarrow 11$
Absorption correction: none	$k = -10 \rightarrow 9$
5973 measured reflections	$l = -19 \rightarrow 20$
2311 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.0731P)^2 + 0.1177P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.123$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3}$
2311 reflections	$\Delta \rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3}$
139 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.049 (8)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.63363 (11)	0.17729 (13)	0.85813 (6)	0.0313 (2)
C11	0.64183 (13)	0.15842 (14)	0.76563 (7)	0.0312 (2)
C12	0.50520 (15)	0.10274 (17)	0.70904 (8)	0.0397 (3)
H12	0.4073	0.0812	0.7325	0.048*
N13	0.50567 (14)	0.07805 (17)	0.62254 (7)	0.0483 (3)
C14	0.64606 (18)	0.10848 (19)	0.59085 (8)	0.0476 (3)
H14	0.6477	0.0919	0.5299	0.057*
C15	0.78857 (17)	0.16272 (19)	0.64222 (9)	0.0453 (3)
H15	0.8850	0.1821	0.6170	0.054*
C16	0.78730 (14)	0.18828 (17)	0.73201 (8)	0.0387 (3)
H16	0.8827	0.2249	0.7691	0.046*
C2	0.51425 (13)	0.26370 (16)	0.89872 (7)	0.0337 (3)
C21	0.37448 (16)	0.3658 (2)	0.85117 (8)	0.0453 (3)
H21A	0.3406	0.4585	0.8898	0.063*
H21B	0.2834	0.2840	0.8334	0.063*
H21C	0.4076	0.4221	0.7991	0.063*
N3	0.54348 (11)	0.24577 (14)	0.98488 (6)	0.0372 (2)
C4	0.68361 (13)	0.14672 (16)	0.99900 (7)	0.0344 (3)
N4	0.75007 (12)	0.09068 (15)	1.08599 (7)	0.0416 (3)
O41	0.67792 (13)	0.13436 (17)	1.14800 (6)	0.0582 (3)
O42	0.87520 (12)	-0.00099 (17)	1.09452 (7)	0.0598 (3)
C5	0.74372 (13)	0.10265 (15)	0.92353 (7)	0.0343 (3)
Н5	0.8390	0.0362	0.9176	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

N1 0.0286 (4) 0.0398 (5) 0.0251 (4) 0.0019 (3) 0.0023 (3) -0.0022	(3) (4)
	(4)
C11 0.0336 (5) 0.0343 (5) 0.0262 (5) 0.0004 (4) 0.0059 (4) -0.0009	(.)
C12 0.0362 (6) 0.0530 (7) 0.0300 (5) -0.0047 (5) 0.0052 (4) -0.0034	(4)
N13 0.0498 (6) 0.0659 (7) 0.0289 (5) -0.0043 (5) 0.0042 (4) -0.0064	(4)
C14 0.0597 (8) 0.0559 (8) 0.0290 (5) 0.0035 (6) 0.0131 (5) -0.0010	(5)
C15 0.0469 (7) 0.0521 (7) 0.0413 (6) 0.0014 (5) 0.0213 (5) 0.0034 (5)	5)
C16 0.0354 (6) 0.0428 (6) 0.0390 (6) -0.0026 (4) 0.0091 (4) -0.0004	(5)
C2 0.0300 (5) 0.0433 (6) 0.0277 (5) 0.0026 (4) 0.0036 (4) -0.0024	(4)
C21 0.0394 (6) 0.0584 (8) 0.0369 (6) 0.0146 (5) 0.0013 (5) 0.0004 (5)	5)
N3 0.0331 (5) 0.0508 (6) 0.0274 (4) 0.0040 (4) 0.0037 (3) -0.0019	(4)
C4 0.0302 (5) 0.0449 (6) 0.0270 (5) -0.0005 (4) 0.0001 (4) 0.0013 (4)	4)
N4 0.0352 (5) 0.0567 (6) 0.0308 (5) -0.0026 (4) -0.0021 (4) 0.0058 (4)	4)
O41 0.0555 (6) 0.0917 (8) 0.0270 (4) 0.0024 (5) 0.0043 (4) 0.0054 (4)	4)
O42 0.0460 (5) 0.0805 (8) 0.0496 (6) 0.0150 (5) -0.0043 (4) 0.0147 (5)	5)
C5 0.0299 (5) 0.0407 (6) 0.0314 (5) 0.0021 (4) 0.0008 (4) 0.0000 (4)	4)

Geometric parameters (Å, °)

N1—C5	1.3505 (14)	C16—H16	0.9300
N1—C2	1.3738 (13)	C2—N3	1.2960 (14)
N1—C11	1.4149 (13)	C2—C21	1.4608 (16)
C11—C12	1.3642 (16)	C21—H21A	0.9600
C11—C16	1.3696 (15)	C21—H21B	0.9600
C12—N13	1.3195 (15)	C21—H21C	0.9600
C12—H12	0.9300	N3—C4	1.3418 (14)
N13—C14	1.3181 (18)	C4—C5	1.3419 (15)
C14—C15	1.359 (2)	C4—N4	1.4089 (14)
C14—H14	0.9300	N4—O42	1.2102 (14)
C15—C16	1.3707 (17)	N4—O41	1.2165 (14)
C15—H15	0.9300	С5—Н5	0.9300
C5—N1—C2	107.26 (9)	N3—C2—N1	111.18 (10)
C5—N1—C11	124.28 (9)	N3—C2—C21	124.35 (10)
C2—N1—C11	128.40 (9)	N1—C2—C21	124.46 (10)
C12—C11—C16	118.99 (10)	C2—C21—H21A	109.5
C12—C11—N1	119.95 (10)	C2—C21—H21B	109.5
C16—C11—N1	121.00 (10)	H21A—C21—H21B	109.5
N13—C12—C11	122.99 (11)	C2—C21—H21C	109.5
N13—C12—H12	118.5	H21A—C21—H21C	109.5
C11—C12—H12	118.5	H21B—C21—H21C	109.5
C14—N13—C12	117.46 (11)	C2—N3—C4	104.15 (9)
N13—C14—C15	123.66 (11)	N3—C4—C5	113.49 (10)
N13—C14—H14	118.2	N3—C4—N4	120.66 (10)
C15—C14—H14	118.2	C5—C4—N4	125.77 (11)
C14—C15—C16	118.62 (11)	O42—N4—O41	123.64 (11)
C14—C15—H15	120.7	O42—N4—C4	117.76 (11)
C16—C15—H15	120.7	O41—N4—C4	118.59 (11)
C11—C16—C15	118.27 (11)	C4—C5—N1	103.91 (9)
C11—C16—H16	120.9	C4—C5—H5	128.0
C15-C16-H16	120.9	N1—C5—H5	128.0
C5-N1-C11-C12	129.18 (12)	C5—N1—C2—C21	178.35 (12)
C2—N1—C11—C12	-47.68 (16)	C11—N1—C2—C21	-4.36 (19)
C5—N1—C11—C16	-48.21 (16)	N1—C2—N3—C4	0.08 (13)
C2-N1-C11-C16	134.93 (12)	C21—C2—N3—C4	-178.71 (12)
C16—C11—C12—N13	-0.83 (19)	C2—N3—C4—C5	0.31 (14)
N1-C11-C12-N13	-178.27 (11)	C2—N3—C4—N4	-176.59 (10)
C11—C12—N13—C14	0.3 (2)	N3—C4—N4—O42	178.79 (11)
C12—N13—C14—C15	0.2 (2)	C5—C4—N4—O42	2.28 (19)
N13-C14-C15-C16	-0.3 (2)	N3—C4—N4—O41	-0.16 (18)
C12—C11—C16—C15	0.74 (18)	C5—C4—N4—O41	-176.67 (12)
N1-C11-C16-C15	178.15 (11)	N3—C4—C5—N1	-0.57 (13)
C14-C15-C16-C11	-0.23 (19)	N4—C4—C5—N1	176.15 (11)
C5—N1—C2—N3	-0.44 (13)	C2—N1—C5—C4	0.58 (12)
C11—N1—C2—N3	176.85 (10)	C11—N1—C5—C4	-176.84 (10)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C12—H12···O41 ⁱ	0.93	2.57	3.2872 (16)	135
C14—H14···N13 ⁱⁱ	0.93	2.75	3.5557 (17)	145
C15—H15···N3 ⁱⁱⁱ	0.93	2.58	3.4342 (16)	153
C5—H5···O42 ^{iv}	0.93	2.37	3.2358 (16)	155

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) x+1/2, -y+1/2, z-1/2; (iv) -x+2, -y, -z+2.

Fig. 2